Basis

Why nonzero?

- Let V be a nonzero subspace of R^{n}. A basis B for V is a linearly independent generation set of V.
$\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis for R^{n}.

1. $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is independent
2. $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ generates R^{n}.
$\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is a basis for R^{2}
$\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 1\end{array}\right]\right\}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\} \quad \begin{aligned} & \text {...... any two independent } \\ & \text { vectors form a basis for } \mathrm{R}^{2}\end{aligned}$

Basis

- The pivot columns of a matrix form a basis for its columns space.

$$
\left[\begin{array}{ccc|c|ccc}
1 & 2 & -1 & 2 & 1 & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 & 9
\end{array}\right] \stackrel{\text { RREF }}{ }\left[\begin{array}{lll|l|l|cc}
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

pivot columns

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right]\right\}
$$

Property

- (a) S is contained in Span S

Basis is always in

its subspace

- (b) If a finite set S^{\prime} is contained in Span S, then Span S^{\prime} is also contained in Span S
- Because Span S is a subspace

- (c) For any vector $z, S p a n ~ S=S p a n ~ S U\{z\}$ if and only if z belongs to the Span S

Theorem

-1. A basis is the smallest generation set.

- 2. A basis is the largest independent vector set in the subspace.
- 3. Any two bases for a subspace contain the same number of vectors.
- The number of vectors in a basis for a nonzero subspace V is called dimension of $\mathrm{V}(\operatorname{dim} \mathrm{V})$.

Theorem 3

Every basis of R^{n} has n vectors.

- The number of vectors in a basis for a subspace V is called the dimension of V , and is denoted $\operatorname{dim} \mathrm{V}$
- The dimension of zero subspace is 0

Example

$$
\begin{gathered}
V=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathcal{R}^{4}: x_{1} \begin{array}{l}
x_{1}=3 x_{2}-5 x_{3}+6 x_{4}
\end{array}\right\} \quad \begin{array}{c}
\text { Find } \operatorname{dim} \mathrm{V} \\
\operatorname{dim} \mathrm{~V}=3
\end{array} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3 x_{2}-5 x_{3}+6 x_{4} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]} \\
\text { Basis? Independent vector set that } \\
\text { generates } \mathrm{V}
\end{gathered}
$$

More from Theorems

Any two bases for a subspace contain the same number of vectors.
R^{m} have a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\} \quad$ All bases have m vectors
A basis is the smallest generation set.

$$
\operatorname{dim} R^{m}=m
$$

A vector set generates R^{m} must contain at least m vectors. Because a basis is the smallest generation set Any other generation set has at least m vectors.

A basis is the largest independent set in the subspace.

Any independent vector set in R^{m} contain at most m vectors.

Independent

Rank

Matrix A is full rank if Rank $A=\min (m, n)$

Matrix A is rank deficient if Rank $A<\min (m, n)$

- Given a mxn matrix A:
- Rank $A \leq \min (m, n)$
- Because "the columns of A are independent" is equivalent to "rank $\mathrm{A}=\mathrm{n}$ "
- If $m<n$, the columns of A is dependent.

\[

\]

$$
\left\{\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right]\right\}
$$

A matrix set has 4 vectors belonging to R^{3} is dependent

In R^{m}, you cannot find more than m vectors that are independent.

Consistent or not

$$
A: m \times n
$$

$\operatorname{Span}\left\{a_{1}, \cdots, a_{n}\right\}=R^{m}=\operatorname{Rank} A=$ no. of rows

Theorem 1

A basis is the smallest generation set.

If there is a generation set S for subspace V ,
The size of basis for V is smaller than or equal to S.

Reduction Theorem
There is a basis containing in any generation set S.
S can be reduced to a basis for V by removing some vectors.

Theorem 1 －Reduction Theorem

所有的 generation set 心中都有一個 basis

S can be reduced to a basis for V by removing some vectors．

Suppose $\mathrm{S}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is a generation set of subspace V
Subspace $V=\operatorname{Span} S \quad$ Let $A=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k}\end{array}\right]$ ． $=\operatorname{Col} A$

The basis of Col A is the pivot columns of A Subset of S

Theorem 1 －Reduction Theorem

所有的 generation set 心中都有一個 basis

$$
\begin{aligned}
& \text { Subspace } V=\operatorname{Span} S=\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right]\right\} \\
& S=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
4 \\
6
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
6 \\
3 \\
9
\end{array}\right]\right\} \\
& \text { Smallest generation set } \\
& \left.A=\begin{array}{|ccc|cccc}
1 & 2 & -1 & 2 & 1 & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
2 & 4 & -3 & 2 & 0 & 3 \\
-3 & -6 & 2 & 0 & 3 & 9
\end{array}\right] \stackrel{\text { RREF }}{ } \quad\left[\begin{array}{cc|c|c|ccc}
1 & 2 & 0 & 0 & -1 & -5 \\
0 & 0 & 1 & 0 & -1 & -5 \\
0 & 0 & 0 & 1 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Theorem 2

A basis is the largest independent set in the subspace.

If the size of basis is k, then you cannot find more than k independent vectors in the subspace.

Extension Theorem

Given an independent vector set S in the space
S can be extended to a basis by adding more vectors

Theorem 2 －Extension Theorem

Independent set：我不是一個 basis 就是正在成為一個 basis

There is a subspace V
Given a independent vector set S（elements of S are in V ）
$\{$ If Span $S=V$ ，then S is a basis
If Span $S \neq V$ ，find v_{1} in V ，but not in Span S
$S=S U\left\{v_{1}\right\}$ is still an independent set
$\left\{\begin{array}{l}\text { If Span } S=V \text { ，then } S \text { is a basis } \\ \text { If } S \text { pan } S \neq V \text { ，find } v_{2} \text { in } V \text { ，but not in Span } S\end{array}\right.$

$$
S=S \cup\left\{v_{2}\right\} \text { is still an independent set }
$$

．．．．．．You will find the basis in the end．

Theorem 3

Null B

Null C

- Any two bases of a subspace V contain the same number of vectors
Suppose $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{p}\right\}$ are two bases of V. Let $A=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} \cdots & \mathbf{u}_{k}\end{array}\right]$ and $B=\left[\begin{array}{llll}\mathbf{w}_{1} & \mathbf{w}_{2} \cdots & \mathbf{w}_{p}\end{array}\right]$.
Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ spans $V, \exists \mathbf{c}_{i} \in \mathrm{R}^{k}$ s.t. $A \mathbf{c}_{i}=\mathbf{w}_{i}$ for all i
$\Rightarrow A\left[\mathbf{c}_{1} \mathbf{c}_{2} \cdots \mathbf{c}_{p}\right]=\left[\mathbf{w}_{1} \mathbf{w}_{2} \cdots \mathbf{w}_{p}\right] \Rightarrow A C=B$
Now $C \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \in \mathrm{R}^{p} \quad \Rightarrow A C \mathbf{x}=B \mathbf{x}=\mathbf{0}$
B is independent vector set $\Rightarrow x=\mathbf{0} \Rightarrow \mathbf{c}_{1} \mathbf{c}_{2} \cdots \mathbf{c}_{p}$ are independent
$\mathrm{c}_{i} \in \mathrm{R}^{k} \Rightarrow p \leq k$
Reversing the roles of the two bases one has $k \leq p \Rightarrow p=k$.

Theorem 4.9 (P258)

- If V and W are subspaces of R^{n} with V contained in W , then $\operatorname{dim} \mathrm{V} \leq \operatorname{dim} \mathrm{W}$
- If $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}, \mathrm{V}=\mathrm{W}$
- Proof:
B_{v} is a basis of V, V in W, B_{v} in W
B_{v} is an independent set in W
By extension theorem, B_{v} is in the basis of $\mathrm{W} \Rightarrow \operatorname{dim} \mathrm{V} \leq \operatorname{dim} \mathrm{W}$ If $\operatorname{dim} V=\operatorname{dim} W=k$
B_{v} is a linear independent set in W, with k elements
It is also the span of W

R^{3} is the only 3-dim subspace of itself

The 2-dim subspace with basis $\{u, v\}$

The 0-dim subspace

Concluding Remarks

-1. A basis is the smallest generation set.

- 2. A basis is the largest independent vector set in the subspace.
- 3. Any two bases for a subspace contain the same number of vectors.
- The number of vectors in a basis for a nonzero subspace V is called dimension of $\mathrm{V}(\operatorname{dim} \mathrm{V})$.

Concluding Remarks

Independent vector set

Basis

雕塑 ．．．主要是使用雕（通過減除材料來造型）及塑（通過疊加材料來造型）的方式 ．．．．．．（from wiki）

